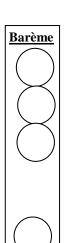
Epreuve de : Sciences Industrielles Pour l'Ingénieur **ELEMENTS DE CORRIGE**



Question 1: a) Compléter le diagramme SADT niveau A-0 du document- réponse 1;

b) Compléter la diagramme SADT niveau A0 du document-réponse 1;

c) Compléter le diagramme FAST du document-réponse 2.

Voir Document-réponses 1 et 2

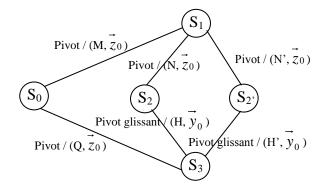
Question 2: Etudier l'équilibre de l'appareil, et évaluer <u>graphiquement</u> le coefficient de frottement minimal f, nécessaire au contact en O, pour assurer la stabilité de l'appareil sur le sol.

<u>Indication</u>: le candidat pourra déterminer, graphiquement, la résultante, au point D, des forces données, afin de ramener le problème à l'étude de l'équilibre sous l'action de trois forces coplanaires.

Voir Document-réponses 3. Les tracés sur le document-réponse ne sont donnés qu'a titre indicatif.

Question 3:

a. Dresser le schéma de structure du mécanisme de guidage;



b. Sachant que m_u=1, Evaluer son degré d'hyperstatisme h;

mc - h = Nc - Ec

Avec: Nc = 8; Ec = 12 et mc = mcu + mci = 1 + 0 = 1

Donc: h=5

Question 3:

c) Après avoir remplacé les liaisons en N par une sphérique (rotule), et celle en N' par une sphère cylindre (linéaire annulaire), , réévaluer le degré d'hyperstatisme ;

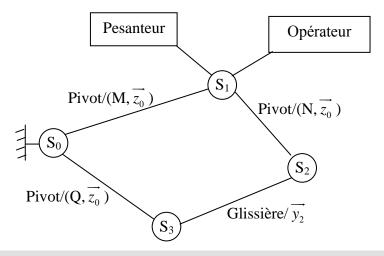
Dans ce cas: Nc = 13 et mc = mcu + mci = 1 + 2 = 3

Donc: h=2

Question 3: d) Quel est l'avantage d'une telle? solution?

Réponse 1 Possible : adoptée par le constructeur est plus rigide (si telle =1^{er} solution). Réponse 2 : réduction des contraints de réalisation et de montage (si telle = 2eme solution).

Ouestion 4: a) Dresser le schéma d'analyse du mécanisme;



Question 4:

- **b)** Isoler l'ensemble $E=(S_2+S_3)$, et en déduire :
 - la direction de la force $\vec{R}_{1/2}$;
 - la relation entre X_{12} , Y_{12} et δ .

E est en équilibre sous l'action de forces $\vec{R}_{1/2}$ et $\vec{R}_{0/3}$. Elles sont alors portées par la droite (Q,N).

Et: $X_{12} = -Y_{12} \cdot tg \delta$

Question 4: c. Isoler S₁ et écrire les 3 équations scalaires qui découlent du P.F.S (Réduire les torseurs au point M);

$$\{\tau_{L01}\} - \{\tau_{L12}\} + \{\tau_{op.}\} + \{\tau_{pes.}\} = \{0\}$$

Réduisons les torseurs au point M et dans la base β_0 :

$$\{\tau_{L12}\} = \begin{cases} X_{12} & \frac{L}{3} (X_{12}.Sin\beta - Y_{12}.Cos\beta) \\ Y_{12} & \end{cases}; \qquad \{\tau_{Op.}\} = \begin{cases} 0 & LF_{Op.} \\ F_{Op.} & \end{cases}_{(M,\beta_0)}$$
et

$$\left\{\tau_{Pes.}\right\} = \left\{\begin{matrix} 0 \\ -P \end{matrix}\middle| \begin{matrix} -\frac{L}{2}P.Cos\beta \\ \end{matrix}\right\}_{(M,\beta_0)}$$

D'où les équations :

T.R.S./
$$\overrightarrow{x_0}$$
: $X_{01} - X_{12} - F_{Op.}.Sin \beta = 0$
T.R.S./ $\overrightarrow{y_0}$: $Y_{01} - Y_{12} - F_{Op.}.Cos \beta$ - $P = 0$

T.M.S. au point M/
$$\vec{z_0}$$
: $\frac{L}{3}(X_{12}.Sin\beta - Y_{12}.Cos\beta) + LF_{Op.} - \frac{L}{2}P.Cos\beta = 0$

- OUI , 4 équations à 4 inconnues .

Question 5:

- a) Montrer que $\vec{V}_{(E \in 1/0)} = \vec{V}_{(E \in 2/0)}$ et $\vec{V}_{(D \in 2/0)} = \vec{V}_{(D \in 3/0)}$
- *b)* Donner les supports des vitesses $\overrightarrow{V}_{(B \in 2/0)}$ et $\overrightarrow{V}_{(E \in 1/0)}$;
- c) Déduire :
 - le C.I .R dans le mouvement de 2 par rapport à 0 (ce point sera noté I_{20});
 - le support de la vitesse : $\overrightarrow{V}_{(D \in 2/0)}$.
- d) Ecrire la relation liant les vecteurs en indiquant leurs supports : $\vec{V}_{(D \in 3/0)}$, $\vec{V}_{(D \in 3/4)}$ et $\vec{V}_{(D \in 4/0)}$;

Déterminer, alors, le module de : $\overrightarrow{V}_{(D \in 2/0)}$;

e) En déduire le module de $\vec{V}_{(B \in 2/0)}$;

Voir Document-réponses 4. Les tracés sur le document-réponse ne sont donnés qu'a titre indicatif.

Question 6:

Déterminer, en fonction des données, les coordonnées du centre de gravité G du support, dans le repère $(B, \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_0})$.

$$\overrightarrow{BG} = \frac{M_{P}.\overrightarrow{BG_{P}} + M_{m}.\overrightarrow{BG_{m}}}{M_{P} + M_{m}}$$

$$Avec: \overrightarrow{BG_{P}} \begin{pmatrix} L_{1}/2 \\ 0 \\ 0 \end{pmatrix}_{\beta_{2} = (\overrightarrow{\lambda_{2}}, \overrightarrow{\lambda_{2}}, \overrightarrow{\lambda_{2}})} et \overrightarrow{BG_{m}} \begin{pmatrix} L_{2} \\ r \\ (h-H)/2 \end{pmatrix}_{\beta_{2}}$$

On obtient alors:

$$X_G = \frac{M_p L_1 / 2 + L_2 M_m}{M_P + M_m} \quad ; \quad Y_G = \frac{r M_m}{(M_P + M_m)} \quad et \quad Z_G = \frac{(h - H) M_m}{2(M_P + M_m)}$$

Question 7:

a) Donner I_{PBz} : moment d'inertie du plateau par rapport à l'axe $(B, \overrightarrow{z}_{_0})$;

$$I_{PBZ} = I_{PGPZ} + M_P(L_1/2)^2 \quad avec: I_{PGPZ} = M_P.L_1/12$$

$$Donc: \underline{I}_{PBZ} = M_P.L_1/3$$

Question 7:

b) Donner I_{2Bz} : moment d'inertie du support 2 par rapport à l'axe (B, \overline{z}_0) , en fonction de M_p , M_m , L_1 , L_2 et r.

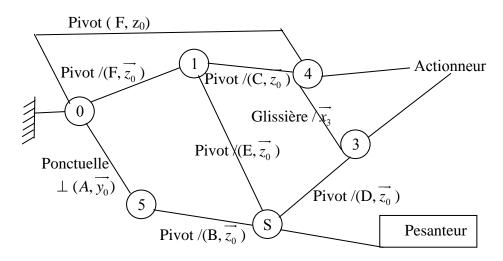
On a: $I_{2BZ} = I_{PBZ} + I_{mBZ}$

Sachant que : $I_{mBZ} = I_{mGmZ} + M(d)^2$ avec : $d^2 = L^2_2 + r^2$

Donc: $\underline{I_{mBZ}} = \underline{M_m(L^2_2 + 3r^2/2)}$ et $\underline{I_{2BZ}} = \underline{M_P.L^2_1/3 + \underline{M_m(L^2_2 + 3r^2/2)}}$

Question 8:

a) Dresser le schéma d'analyse du mécanisme (Remplacer le solide 2 par S);



Question 8: b) Déterminer l'énergie cinétique galiléenne de l'ensemble
$$\Sigma = S \cup 5 \cup 4 \cup 3 \cup 1 ;$$

 $T_{(\Sigma/R0)} = T_{(S/R0)}$

Avec: $T_{(S/R0)} = \frac{1}{2} \{ v_{(S/R0)} \} . \{ C_{(S/R0)} \}$

Au point B:
$$\{v_{(S/R0)}\}=\left\{\begin{matrix} \dot{\theta} \, \overrightarrow{z_0} \\ \dot{x} \, \overrightarrow{x_0} \end{matrix}\right\}_B$$
 et $\{C_{(S/R0)}\}=\left\{\begin{matrix} M_S \, \overrightarrow{V}_{(GS/R0)} \\ \overrightarrow{\sigma}_{(B,S/R0)} \end{matrix}\right\}_B$

$$\operatorname{avec}: \overrightarrow{V}_{(GS/R0)} = \overrightarrow{V}_{(B,S/R0)} + \overrightarrow{G_SB} \wedge \overrightarrow{\Omega}_{(S/R0)} = \overrightarrow{x} \overrightarrow{x_0} + a.\theta \overrightarrow{y_2} \text{ et } \overrightarrow{z_0}.\overrightarrow{\sigma}_{(B,S/R0)} = I_S.\theta^2 + M_S.x.a.\sin\theta$$
 Finalement:
$$\boxed{T_{(\Sigma/R0)} = \frac{1}{2}(I_S.\theta^2 + M_S.x(x - 2a\theta.Sin\theta))}$$

- la puissance galiléenne des actions mécaniques extérieures à Σ ;
- la puissance interne à Σ ;

$$\frac{P_{(\bar{\Sigma}\to\Sigma/R0)} = P_{(0\to1/R0)} + P_{(0\to5/R0)} + P_{(0\to4/R0)} + P_{(g\to S/R0)} = P_{(g\to S/R0)} = -M_s \cdot g \cdot \dot{\theta} \cdot a \cdot Cos\theta}{P_{\text{int}} = P_{(3\leftrightarrow4)} = F_m \dot{y}}$$

Question 8:

d) Appliquer le théorème de l'énergie cinétique à l'ensemble
$$\Sigma$$
, et déduire l'expression de l'effort F_m . (Ne pas expliciter le terme $\frac{dT_{(\Sigma/R0)}}{dt}$).

$$F_{m} = \frac{1}{y} \left[\frac{d T_{(\Sigma/R0)}}{dt} + M_{S}.g.a.\theta.\cos\theta \right]$$

C.N.C. 2009 - Epreuve de Sciences Industrielles - Eléments de corrigé-		
Question 9:	a)	Sachant que la transmission de mouvement se fait sans glissement, exprimer ω_m en fonction de $\overset{\square}{y}$, λ et P ; $\omega_m = \frac{2\pi}{P\lambda}\overset{\square}{y}$
Question 9:	<i>b</i>)	Donner, alors, le couple moteur C_m en fonction de λ , P , F , η_1 et η_2 .
On a: $F_m y = \omega_m C_m \eta_1 \eta_2$		Donc: $C_m = \frac{P\lambda}{2\pi\eta_1\eta_2} F_m$
Question 10 :	a)b)	Compléter le chronogramme et le tableau du document-réponse 5; Modifier le GRAFCET pour que le comportement du compteur intègre toutes les conditions suivantes: Remise à zéro du compteur dés l'activation de l'AU (clé de sécurité débranchée) ou dés que l'on appuie sur le bouton "STOP"; N'incrémenter que si Pinc est inférieure strictement à 15;
		■ Ne décrémenter que si P inc est supérieure strictement à 0.
		Voir Document-réponses 5.
Question 11 :	a)	<u>Sur le document-réponse 6 :</u> Compléter les tableaux de Karnaugh des segments A et E, puis trouver leurs équations logiques simplifiées ;
		<u>Voir Document-réponses 6.</u>
Question 12:	a)	La transmission de mouvement est supposée sans glissement. Déterminer la relation entre : • V (t) et $\omega_{T(t)}$; • $\omega_{T(t)}$ et ω_{mt} .
		$V_{(t)} = \frac{D}{2} \omega_{T(t)}$ et $\omega_{T(t)} = N \omega_{m(t)}$
Question 12 :	<i>b</i>)	Les gains de l'adaptateur, du capteur et de l'amplificateur sont : KA, Kc et K, successivement. Compléter le schéma bloc du Document-réponse 6.
		Voir Document-réponses 6.

Question 12:

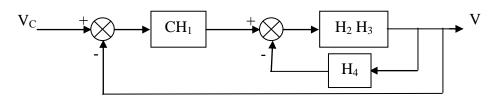
c) Transformer ce schéma bloc pour le mettre sous la forme de celui de la figure 14. Identifier, ensuite, chacune des fonctions de transfert Hi (P) pour $i \in \{1,2,3,4,5\}$;

$$H_1 = KK_A$$
; $H_2 = \frac{2K_m}{RND}$; $H_3 = \frac{N^2D^2}{4} \cdot \frac{1}{jp}$; $H_4 = \frac{2K_m}{ND}$ et $H_5 = \frac{2K_C}{K_A \cdot ND}$

Question 13:

- *a)* On suppose que $K_5=1$; trouver:
 - la fonction de transfert de la commande en boucle fermée vis-à-vis de la consigne $V_{c(t)}$: $H_{e(p)}$;
 - la fonction de transfert de la commande en boucle fermée vis-à-vis de la perturbation $F_{T(t)}$: $H_{per(p)}$;

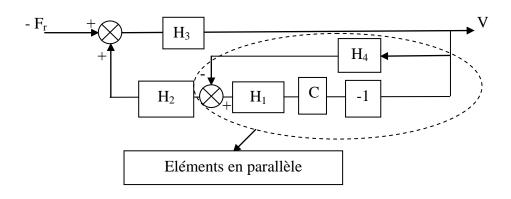
Pour H_e:



$$H_e = \frac{C.H_1 \cdot \frac{H_2 H_3}{1 + H_2 H_3 H_4}}{1 + C.H_1 \cdot \frac{H_2 H_3}{1 + H_1 H_1 H_2}} \quad \text{ou encore} : H_e = \frac{CH_1 H_2 H_3}{1 + H_2 H_3 H_4 + CH_1 H_2 H_3}$$

Finalement:
$$H_e = \frac{K_1 K_2 K_3}{K_1 K_2 K_3 + K_2 K_3 K_4 \cdot p + p^2}$$

Pour Hper:



$$H_{per} = \frac{H_3}{1 + H_2 H_3 H_4 + C H_1 H_2 H_3}$$
 ou encore $H_{per} = \frac{K_3 \cdot p}{K_1 K_2 K_3 + K_2 K_3 K_4 \cdot p + p^2}$

$$H_{per} = \frac{K_3 \cdot p}{K_1 K_2 K_3 + K_2 K_3 K_4 \cdot p + p^2}$$

Question 13 : b) Justifier que si l'asservissement est stable vis-à-vis de la consigne, alors il l'est vis-à-vis de la perturbation ;		
He et Hper ont le même dénominateur, donc la même équation caractéristique. Si l'asservissement est stable pour l'entrée principale, alors il l'est pour la perturbation.		
Question 13: c) L'effort F _{T(t)} est constant et égal à F ₀ . Calculer, en régime permanent, la perte en vitesse causée par cette perturbation.		
Calculons ΔV : valeur en régime permanent de la sortie pour l'entrée perturbation.		
$\Delta V = \lim_{t \to \infty} V_{(t)} \Big _{V_c = 0} = \lim_{p \to 0} p V_{(p)} \Big _{V_c = 0} = \lim_{p \to 0} p H_{per} F_{T(p)} \text{Pour } F_{T(p)} = \frac{F_0}{p} \text{on trouve : } \Delta V = 0$		
<u>Ou encore</u> : existence d'une perturbation en amont du point d'injection de la perturbation d'où le résultat.		
Question 13: d) Le choix du correcteur $C_{(p)}$ est-il compatible avec les exigences du cahier des charges ? Expliquer.		
Oui : l'asservissement est insensible aux perturbations.		
Question 14: a) Déterminer la fonction de transfert en boucle ouverte, $H_{BO(p)}$, de l'asservissement, et donner ses caractéristiques (ordre, classe et gain K_{BO});		
$H_{BO} = \frac{K_1 K_m K_6}{p(1 + \tau_m p)} \text{donc: } K_{BO} = K_1 K_m K_6 \text{ ; Classe: 1 et ordre: 2}$		
Question 14: b) Pour une entrée échelon unitaire, que serait l'erreur statique de l'asservissement ? Justifier ;		
$arepsilon_{\scriptscriptstyle S}=0$		
Question 14: c) Déterminer la fonction de transfert en boucle fermée : $H_{BF(p)}$;		
$H_{BF} = \frac{H_{BO}}{1 + H_{BO}} = \frac{1}{1 + \frac{p}{K_{BO}} + \frac{\tau_m}{K_{BO}} p^2}$		
Question 14: d) L'asservissement est-il stable?		
Asservissement de deuxième ordre fondamental, donc : stable.		

Question 14:

e) Que devra être la relation entre la gaine boucle ouverte, K_{BO} , et τ_m pour que l'asservissement soit rapide mais sans dépassement de la consigne.

$$\xi = 1$$
 or: $\frac{2\xi}{\omega_n} = \frac{1}{K_{BO}}$ et $\omega_n = \sqrt{\frac{K_{BO}}{\tau_m}}$ d'ou: $K_{BO} = \frac{1}{4\tau_m}$

Question 14:

f) Pour $\tau_m=10^{-2}\,\mathrm{s}\,$, évaluer la marge de phase MP et la marge de gain MG de l'asservissement ;

 $MG = \infty$ (Asservissement de 2^{e} ordre).

 $MP = 180^{\circ} + ArgH_{BO(i\omega co)} = 90^{\circ} - Arc \tan(\tau_m \omega_{co})$

 ω_{co} est telle que : $\left| H_{BO(j\omega co)} \right| = 1$ ou encore : $\frac{K_{BO}}{\omega_{co} \sqrt{1 + \tau_m^2 \cdot \omega_{co}^2}} = 1$

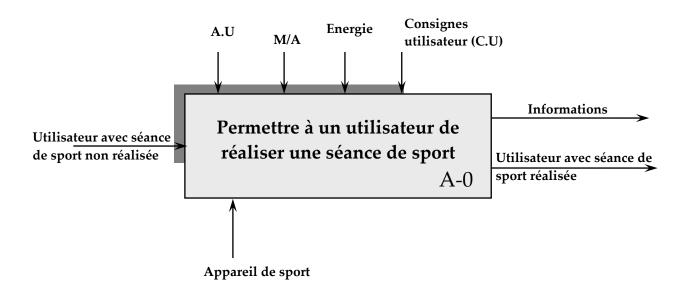
On trouve : $\omega_{co} = 24.3 \ rad.s^{-1}$

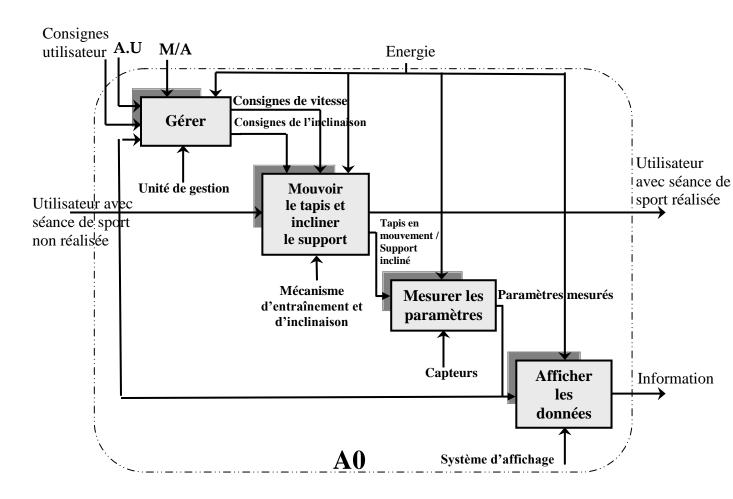
Ainsi : MP=76,34°

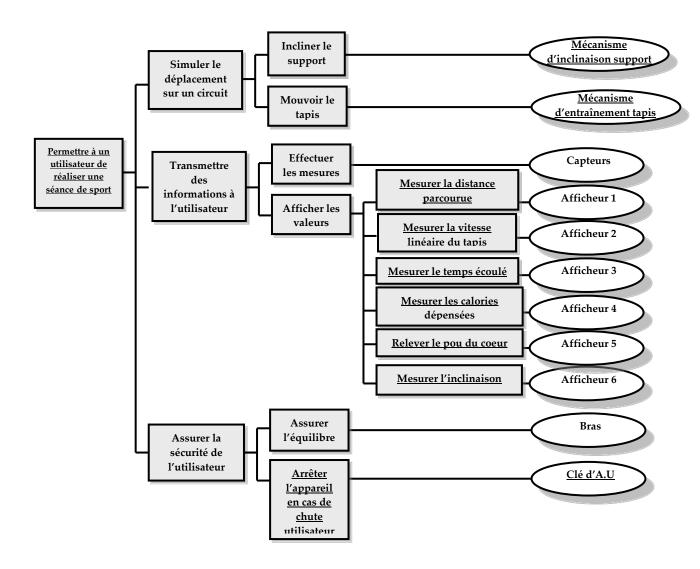
Question 14:

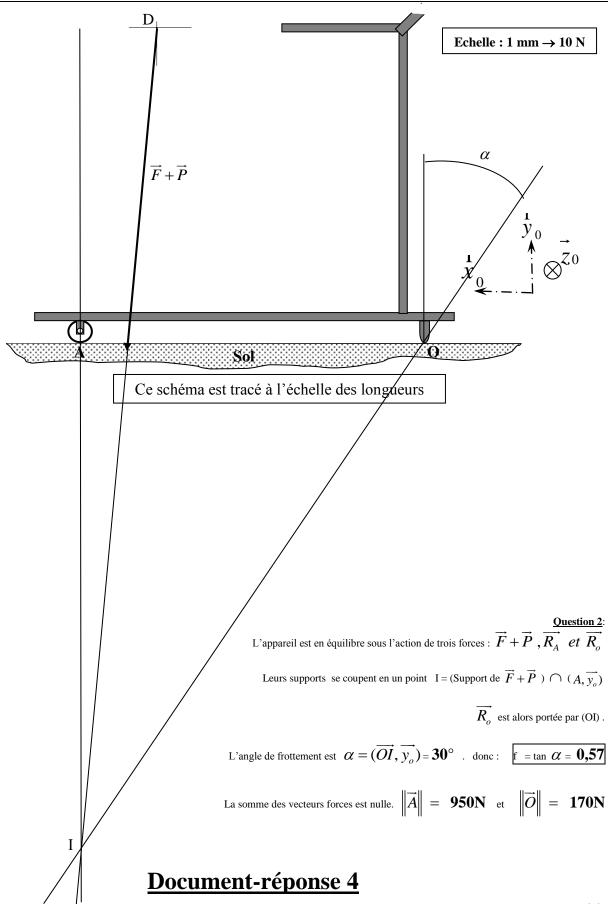
g) Conclure quant au respect des exigences du cahier des charges.

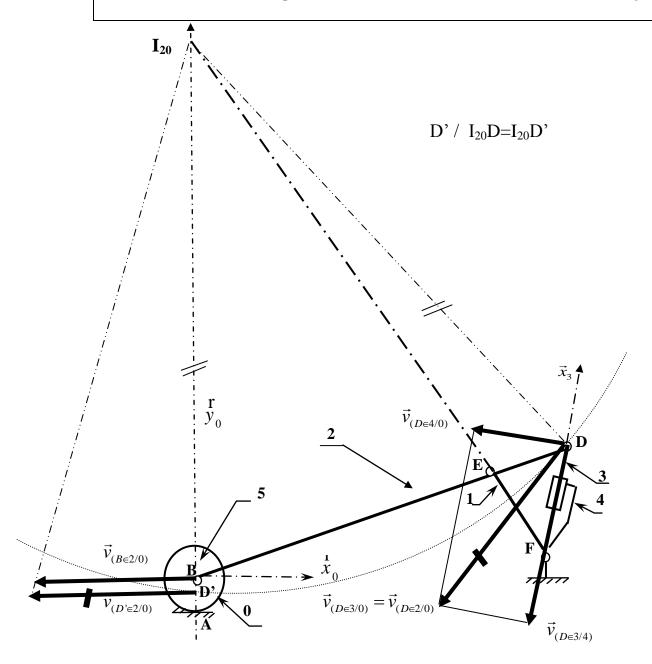
Toutes les exigences du c.d.c.f sont satisfaites.





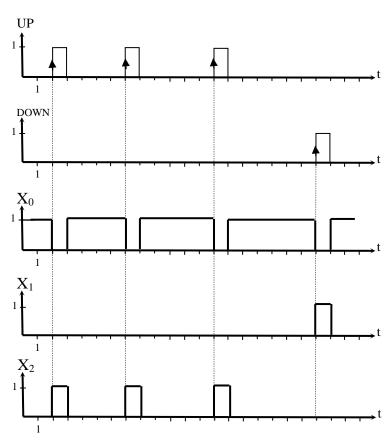






Question 5:

- a) Pivot en E entre 1 et 2. Pivot en D entre 2 et 3.
- **b**) $\vec{V}_{(B,2/0)}$ est portée par (B,\vec{x}_0) . $\vec{V}_{(E,1/0)}$ est porté par la perpendiculaire à (FE).
- c) $I_{20} = (B, \overrightarrow{y_0}) \cap (FE)$. $\overrightarrow{V}_{(D,2/0)} \perp (I_{20}D)$.
- **d)** $\vec{V}_{(D,3/0)} = \vec{V}_{(D,3/4)} + \vec{V}_{(D,4/0)}$. On trace cette somme. On trouve : $\| \vec{V}_{(D \in 2/0)} \| = 26$ mm/mn
- e) Voir tracé: $\| \overrightarrow{V}_{(B \in 5/0)} \| = 24 \text{ mm/mn}$



Temps (s)	P _{inc}
t = 0 s	0
t = 4 s	1
t = 9 s	2
t = 15 s	3
t = 22 s	2

